Процесс формирования представлений о смысле арифметических действий в ходе курса начальной школы

Новое об образовании » Формирование представлений у учащихся начальных классов о смысле арифметических действий » Процесс формирования представлений о смысле арифметических действий в ходе курса начальной школы

Страница 1

Основой процесса обучения математике в системе, направленной на общее развитие школьников, являются ее дидактические принципы и типические свойства, что выражается, в первую очередь, в самостоятельном - коллективном и индивидуальном - добывании знаний самими учениками на основе использования их опыта, результатов их практической деятельности, проведенных наблюдений, высказанных предположений, их сравнения и доказательного отбора.

Таким образом, основным в обучении математике является индуктивный путь познания этого предмета, особенно в начале обучения, что не исключает использования и дедуктивного пути в тех случаях, когда это диктуется особенностями рассматриваемого вопроса и возможностями детей. Общая тенденция заключается в постепенном увеличении удельного веса дедуктивного подхода по мере взросления детей.

Максимальное внимание к личности ученика, выявление и использование всех его потенциальных возможностей служит психолого-педагогической основой, как для его развития, так и для полноценного усвоения знаний, умений и навыков.

Основным содержанием программы в начальных классах являются понятия натурального числа и действий с этими числами.Изучение натуральных чисел происходит по следующим концентрам: однозначные числа, двузначные числа, трехзначные числа, числа в пределах класса тысяч, числа в пределах класса миллионов. Выделение таких концентров связано с тем, что одной из главных задач изучения этой темы является осознание принципа построения той системы счисления, которой в настоящее время пользуются в большинстве стран мира - позиционной десятичной. В этой системе числа десять, сто, тысяча и т.д. являются основными системообразующими и, следовательно, должны занимать особое место в процессе изучения, а не возникать как рядоположенные по отношению к остальным натуральным числам.

Первоначальной основой знакомства с натуральными числами является теоретико-множественный подход, который позволяет максимально использовать дошкольный опыт учеников, сложившиеся у них представления о механизме возникновения чисел как результата пересчета предметов.

Таким образом, натуральное число возникает как инвариантная характеристика класса равномощных конечных множеств, а основным инструментом познания отношений между ними становится установление взаимно однозначного соответствия между элементами множеств, имеющих соответствующие числовые характеристики. На этой основе формируются понятия об отношениях «больше», «меньше», «равно», «не равно» как между множествами, так и между соответствующими им числами.Изучение концентра однозначных натуральных чисел завершается их упорядочиванием и знакомством с началом натурального ряда и свойствами этого ряда.

В дальнейшем происходит постепенное расширение множества натуральных чисел по концентрам: двузначные числа, трехзначные числа и т.д., которое завершается классом миллионов. При изучении каждого из последующих концентров в центре внимания находится образование новой единицы счета - десятка, сотни, тысячи и т.д., что неразрывно связано с принципами построения десятичной позиционной системы счисления, с овладением устной и письменной нумерацией на множестве натуральных чисел.

Необходимо иметь в виду, что хотя первоначально натуральное число возникает перед учениками в близком их дошкольному опыту теоретико-множественном подходе, уже в первом классе дети знакомятся и с интерпретацией числа как результата отношения величины к выбранной мерке. Это происходит при изучении такой величины как длина в первом классе, масса, вместимость, площадь и разнообразных других величин в последующие годы обучения в начальной школе.

Эти два подхода к натуральному числу сосуществуют на протяжении всего начального обучения, завершаясь обобщением, в результате которого появляются понятия точного и приближенного числа.

Расширение понятия числа происходит за счет знакомства с дробными, а также положительными и отрицательными числами. Основными направлениями работы с ними являются: осознание тех жизненных ситуаций, которые привели к необходимости введения новых чисел, выделение детьми таких ситуаций в окружающем их мире, относительность их использования, как в жизни, так и в математике.

Основой первоначального знакомства с действиями сложения и вычитания является работа с группами предметов (множествами) как в виде их изображений на рисунках, так и составленных из раздаточного материала. Сложение рассматривается как объединение двух (или нескольких) таких групп в одну, вычитание - как разбиение группы на две. Такой подход позволяет, с одной стороны, построить учебную деятельность детей на наиболее близких для данной возрастной группы наглядно-действенном и наглядно-образном уровнях мышления, связать изучаемые действия с образной моделью, а с другой стороны, с первых шагов знакомства установить связь между сложением и вычитанием.

В дальнейшем понятие о сложении и вычитании становится более разносторонним и глубоким за счет рассмотрения их с других точек зрения: сложение рассматривается как действие, позволяющее увеличить число на несколько единиц; вычитание - как действие, позволяющее уменьшить число на несколько единиц, а также как действие, позволяющее установить количественную разницу между двумя числами, т.е. ответить на вопрос, на сколько одно число больше (меньше) другого.

Страницы: 1 2 3

Другое по педагогике:

История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...

Роль авторитета учителя

Роль авторитета учителя в учебном процессе

Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.

Категории

Copyright © 2019 - All Rights Reserved - www.listeducation.ru