Методические особенности изучения степенной функции

Страница 2

Пусть k – целое число, n – натуральное число, не равное 1. Степенью положительного числа с рациональным показателем называется положительный корень n – ой степени из числа .

.

Такие разногласия вряд ли желательны, поэтому учителю приходится объяснять, что при n=1 получаем равенство.!!!!!

Некоторые задания авторов данного учебного пособия сформулированы, с нашей точки зрения, некорректно. Например, задание 1.134: Запишите корни в виде степени с рациональным показателем: , , .

Выполнить это задание можно только для первого примера, во всех остальных случаях выражения имеют смысл при всех значениях переменных (в последнем примере ), переход от корней к степеням с рациональным показателем сужает область значений, при которых выражения имеют смысл.

Невозможно выполнить и упражнение 1.138.

Вычислите 8) , так как выражение не имеет смысла.

Возникает также правомерный вопрос: почему степень с рациональным нецелым показателем определяется только для положительного числа . Возникает мысль, что можно было бы разделить рациональные не целые показатели на две группы: p – целое число, q – натуральное нечетное число и вторая группа – p – целое число, q – натуральное нечетное число, и получить различные ограничения на переменную , например, , где , но , где не понятно, почему .

Учащимся можно пояснить, что без ограничения невозможно бы провести цепочку преобразований, например, следующих: .

Такие пояснения делают для учащихся более понятным, почему при рассмотрении степени с рациональным нецелым показателем основание должно быть положительным, и при каком показателе основание может быть равным нулю. Хорошо бы также привести и графическую иллюстрацию, показать, что область определения функции – вся числовая прямая, область определения функции – множество неотрицательных чисел.

После этого целесообразно выполнить упражнение 1.137. Имеет ли смысл выражение: , , , и так далее.

Полезно использовать при доказательстве свойств степени с рациональным показателем таблицу «Степени и корни» авторов М.Г. Шраера, В.С. Дувановой «Таблицы по алгебре и началам анализа, 11 классс». Для удобства ссылок в таблице слева помещены свойства арифметических корней, что делает доказательство для учащихся более простым.

Заметим, что свойство 6 степеней с рациональным показателем (при, , при r>0; при r<0) можно в дальнейшем трактовать как возрастание степенной функции на промежутке при r>0 и ее убывание на этом же промежутке при r<0.

Таким образом, подводя итоги можно отметить, что изучение степенной функции – одна из наиболее сложных проблем в дидактике математики.

При построении методики изучения вопросов, связанных со степенной функцией целесообразно направлять учебную деятельность на освоение общих способов действий.

Необходимо выявлять происхождение вводимых понятий с точки зрения теоретического познания основ математики.

Изучение учебного материала полезно выстроить по принципу содержательного обобщения, при этом с самого начала формировать учебную деятельность как научно-теоретическую.

Страницы: 1 2 3 4 5

Другое по педагогике:

История развития системы дополнительного образования детей в СССР
Десятилетие после Октября 1917 г. иногда называют "педагогическим ренессансом". Этот период, действительно, отличается разнообразием педагогических поисков и экспериментов, но вместе с тем он характеризуется, прежде всего, нарушением сложившегося баланса между государственным и частным об ...

Роль авторитета учителя

Роль авторитета учителя в учебном процессе

Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.

Категории

Copyright © 2019 - All Rights Reserved - www.listeducation.ru