Методические рекомендации по осуществлению контроля при изучении линии уравнений в основной школе

Новое об образовании » Контроль знаний учащихся при изучении линии уравнений в основной школе » Методические рекомендации по осуществлению контроля при изучении линии уравнений в основной школе

Страница 4

– А какое еще свойство вы применяли?

(Если разделить или умножить обе части уравнения на одно и тоже отличное от нуля число, то получится уравнение равносильное данному).

IV. Изучение нового материала.

– Ребята, а сегодня мы познакомимся с уравнениями нового вида.

– Пусть известно, что одно их двух чисел на 5 больше другого. Если первое число обозначить буквой х, а второе буквой у, то соотношение между ними можно записать в виде равенства , содержащего 2 переменные. Такие уравнения называются уравнениями с двумя переменными или уравнениями с двумя неизвестными.

– Уравнениями с двумя переменными также являются уравнения: , , , (запись на доске).

– Из этих уравнений первые два имеют вид , где а, b, с – числа. Такие уравнения называются линейными уравнениями с двумя переменными. – Итак, что же называется линейным уравнением с двумя переменными? Попробуйте сформулировать определение (формулируют)

– Итак, линейным уравнением с двумя переменными называется уравнение вида , где х и у – переменные, а, b, с, – некоторые числа.

– Откройте учебники на странице 174. Прочитайте определение про себя.

– Теперь прочитайте вслух.

– Повтори,

– Рассмотрим уравнение . При х=8, у=3 оно обращается в верное равенство 8-3=5. Говорят, что пара значений переменных х=8, у=3 является решением этого уравнения. Записываю на доске: х-у=5, х=8, у=3 8-3=5 - верное равенство. Итак, х=8, у=3 – решение данного уравнения. Определение: Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

– Прочитайте это определение на странице 174 про себя.

– Прочитайте определение вслух.

– Повтори,

– А какие еще пары чисел будут являться решениями уравнения ? (х=105, у=100; х=4, у= -1,…)

– Правильно, решениями этого уравнения будут являться числа, разность которых равна 5.

– Иногда пары значений переменных записывают короче: (105; 100), (4;- 1). (Запись на доске).

– При такой записи необходимо знать, значение какой из переменных стоит на первом месте, а какой – на втором. В записи решений уравнения с переменными х и у на первом месте записывают значения х, а на втором – значение у.

– Уравнения с двумя переменными имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

– Ребята, при решении линейных уравнений с одной переменной мы вспомнили их свойства. А какими свойствами обладают линейные уравнения с двумя переменными? Откройте учебники на стр. 175. Прочитайте эти свойства про себя.

– Так какими же, … ? Прочитай вслух. …… , повтори свойства.

– Рассмотрим уравнение . Воспользовавшись свойствами уравнений, выразим из этого уравнения одну переменную через другую, например у, через х. Для этого, перенесем слагаемое 5х в правую часть уравнения, изменив его знак: . Разделим обе части этого уравнения на 2: . Уравнения и – равносильны.

– Пользуясь формулой , можно найти сколько угодно решений уравнения . Для этого достаточно взять произвольное х и вычислить соответствующее ему значение у. Например: если х=2, то у = -2,5, 2+6=1. Если х=0,4, то у = -2,5*0,4+4=5. Пары чисел (2; 1), (0,4; 5) – решение уравнения. Это уравнение имеет бесконечно много решений.

Страницы: 1 2 3 4 5 6 7

Другое по педагогике:

Виды и формы дополнительно образования детей
Дополнительное образование – особая сфера образования, официально обозначенная в Законе РФ «Об образовании». Дополнительное образование осуществляется вне рамок основных образовательных программ. Существуют следующие модификации учреждений дополнительного образования детей, которые отличаются рядом ...

Роль авторитета учителя

Роль авторитета учителя в учебном процессе

Учитель и ученик … две основные фигуры в школе. Личности, чьи взаимоотношения на уроке и вне его непосредственно и решающе влияют на весь учебно-воспитательный процесс, определяют его успех. Не случайно так важно создание в школе атмосферы глубокого взаимопонимания, доброжелательности, уважения, сотрудничества.

Категории

Copyright © 2019 - All Rights Reserved - www.listeducation.ru